
Smoothie

Smoothie: Solver Mixing Object OrienTed Hybrid Integrated Executable

Yuji Shinano, Stefan Vigerske, Zuse Instiute Berlin

In Short

• Development of the strongest parallel MIP solver
in terms of solving previously unsolved instances
to optimality.

• Sharing information dynamically among different
solver implmentations.

• Generating a single binary to make it easy to run
on any parallel computing environment.

We deal with solvers for NP-hard mixed-integer
linear optimization problems in the form

min{c⊤x : Ax ≤ b, l ≤ x ≤ u, xj ∈ Z, for all j ∈ I},
(0.1)

with matrix A ∈ Rm×n, vectors b ∈ Rm and
c, l, u ∈ Rn, and a subset I ⊆ {1, . . . , n}. Currently,
there exist several excellent commercial solvers,
e.g., COPT1, FICO XPRESS2, Gurobi3, and non-
commercial solvers, e.g., HiGHS4 and SCIP5, all
implementing mathematically highly sophisticated
algorithms to tackle (0.1). Current state-of-the-art
solvers use a branch-and-bound algorithm where a
linear relaxation ((0.1) without xj ∈ Z, j ∈ I) is used
for bounding, and branching and cutting plane gen-
eration are used to enforce the integrality restriction
xj ∈ Z, j ∈ I. Additional algorithmic components
like presolve and primal heuristics are used to accel-
erate the search for feasible solutions and proving
optimality. Hereby, presolve refers to a collection of
problem reductions that are typically applied in ad-
vance of the branch-and-bound procedure. Cutting
plane generation is a method that tightens the linear
relaxation by means of additional linear inequalities.
Primal heuristics focus on the generation of feasi-
ble solution early and during the branch-and-bound
algorithm.

Benchmarks have shown that solvers often excel
on different instances, so that no solver’s perfor-
mance dominates another. The same can be ob-
served when running a solver with different param-
eter settings. There is no single setting that is best

1https://www.copt.de/
2https://www.fico.com/en/products/

fico-xpress-optimization
3https://www.gurobi.com/
4https://highs.dev/
5https://scipopt.org/

Figure 1: UG reached version 1.0: Controller object LoadCoor-
dinator is also abstracted

for all instances. Therefore, a natural idea to solve
hard instances is to run several solvers in parallel.
By adding communication of feasible solutions and
other useful information between different solvers,
it is possible to obtain a new solver that potentially
outperforms each base solver.

We had a series of NHR projects related to the
Ubiquity Generator (UG) framework6. Originally,
UG was developed to parallelize a state-of-the-art
branch-and-bound based solver. This proposal is
a follow up to the latest project Generalized UG
(bem00052), which aims to develop a single unified
framework to parallelize both branch-and-bound and
non-branch-and-bound based solvers. The gener-
alized UG framework reached version 1.0, in which
not only the solver and communication parts, but
also the controller part (the LoadCoordinator) were
abstracted. This allows users of UG to design and
implement specific controlling mechanisms, such as
load balancing, for a specific parallel solver by defin-
ing its own message passing protocols; see also
Figure 1.

There are a few successful results of previously
unsolved instances being solved by using large scale
computing environments. ParaSCIP and ParaX-
press have solved 23 open MIP instances [1][2] and
UG[SCIP-Jack, MPI] has solved five open Steiner
tree problem instances [3][4]. These successful
results were possible by using the parallelization
software framework UG [5], which parallelizes exist-
ing state-of-the-art branch-and-bound based solvers.
Basic concept of the UG framework is to exploit the
performance of state-of-the-art "base solvers", such
as SCIP, XPRESS, etc., without the need for paral-
lelization within the base solver. The base solvers
and communication libraries are then abstracted
within UG.

This project aims to develop the strongest par-
allel MIP solver in terms of solving previously un-

6https://ug.zib.de

bem12345

https://www.copt.de/
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization
https://www.gurobi.com/
https://highs.dev/
https://scipopt.org/
https://ug.zib.de


Figure 2: Final configuration of Smoothie

solved instances to optimality. To achieve this pur-
pose, we consolidate the knowledge that has been
akkumulated so far to develop the software frame-
work Smoothie (Solver Mixing Object OrienTed Hy-
brid Integrated Executable). Figure 2 shows the
final configuration of Smoothie, which is an exten-
sion of Fiber/ParaXpress with, initially, Gurobi and
COPT. We have decided to use these solvers as they
frequently appear at the top of MIP solver bench-
marks. Since we aim to solve previously unsolv-
able instances, we need to use the best perform-
ing solvers as base solvers. At a later stage, we
plan to utilize also existing UG-adapters for the non-
commercial solvers SCIP and HiGHS. The gener-
alized UG, that is, the UG version 1.0, allows to
develop a specialized load coordinator for Smoothie,
in which next to the current best feasible solution
also additional information can be shared among
solvers. This concept has already been tested in the
POEM project (bem00078) and should be developed
further for Smoothie.

Currently, the next iteration of the MIP instance
library [6], MIPLIB 2024, is developed by the com-
munity of MIP solver developers7. We believe
that Smoothie can help to obtain optimal or nearly-
optimal solutions for many of the new challenging
instances that will be part of MIPLIB 2024.

We plan to develop Smoothie in two phases. In the
first phase, we develop Racing-Smoothie, a solver
for a large scale racing mode, in which XPRESS,
Gurobi, and COPT are run in parallel with vary-
ing settings and random seeds, while communicat-
ing feasible solutions and other information. In this
phase, we can test the effectiveness of information
sharing. In the second phase, Racing-Smoothie will
be extended to Smoothie by using ParaXpress for
parallel branch-and-bound.

7https://miplibsubmissions.zib.de/

WWW

http://www.zib.de

More Information

[1] Y. Shinano, T. Achterberg, T. Berthold, S.
Heinz, T. Koch, and M. Winkler, Proc. IPDPS
(2016). doi:10.1109/IPDPS.2016.56

[2] Y. Shinano, T. Berthold, and S. Heinz,
Optimization Methods and Soft-
ware 33, no. 3, 530–539, (2018). doi:
10.1080/10556788.2018.1428602

[3] Y. Shinano, D. Rehfeldt, and
T. Gally, Proc. IPDPSW (2019). doi:
10.1109/IPDPSW.2019.00095

[4] Y. Shinano, D. Rehfeldt, and T. Koch, Proc.
CPAIOR (2019). doi:10.1007/978-3-030-19212-
9_35

[5] Y. Shinano Oper. Res. Proc.(2017) (2018). doi:
10.1007/978-3-319-89920-6_20

[6] A. Gleixner, G. Hendel, G. Gamrath, T. Achter-
berg, M. Bastubbe, T. Berthold, P. Christophel,
K. Jarck, T. Koch, J. Linderoth, M. Lübbecke,
H. D. Mittelmann, D. Ozyurt, T. K. Ralphs,
D. Salvagnin, and Y. Shinano Math. Program.
Comput. (2021). doi:10.1007/s12532-020-
00194-3

Project Partners

GAMS

Funding

Forschungscampus Modal

DFG Subject Area

409-02

bem12345

https://miplibsubmissions.zib.de/
http://www.zib.de
http://dx.doi.org/10.1109/IPDPS.2016.56
http://dx.doi.org/10.1080/10556788.2018.1428602
http://dx.doi.org/10.1109/IPDPSW.2019.00095
http://dx.doi.org/10.1007/978-3-030-19212-9_35
http://dx.doi.org/10.1007/978-3-030-19212-9_35
http://dx.doi.org/10.1007/978-3-319-89920-6_20
http://dx.doi.org/10.1007/s12532-020-00194-3
http://dx.doi.org/10.1007/s12532-020-00194-3

	Smoothie: Solver Mixing Object OrienTed Hybrid Integrated Executable

