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In Short

• We are developing a method to model how
molecules behave after absorbing light, such as
during photosynthesis, in solar panels, or in the
human eye to initiate vision.

• By combining deep neural networks with Quantum
Monte Carlo (QMC) methods, we can simulate
these complex processes with high efficiency and
accuracy.

• Our approach enables us to track the movement of
excited molecules, providing a deeper understand-
ing of energy conversion and transfer mechanisms
in materials like solar cells and pigments.

• This method simulates the ultra-fast transitions in
molecular systems, revealing how molecules relax
after being excited, offering insights into natural
processes like photosynthesis and photoprotection
mechanisms.

Understanding the behavior of molecules at a
fundamental level requires solving the equations of
quantum mechanics, which describe how electrons
interact within molecules. This is especially impor-
tant when molecules are excited by light, entering
what is called an "excited state". Photoexcitations
introduce energy into a molecule leading to an inter-
esting cascade of reactions. These reactions are key
to processes like converting sunlight into chemical
energy in a leaf during photosynthesis, generating
electricity in solar panels, or enabling vision through
the isomerization of retinal chromophores in the hu-
man eye. They are also critical for photoprotection
mechanisms, such as those involving tyrosine, which
help protect skin cells from UV damage.

However, studying these ultrafast and intricate pro-
cesses isn’t easy. To accurately capture the interac-
tions of excited electrons, we need to solve complex
quantum equations. Traditional methods for doing
this are either accurate but slow or fast but inaccu-
rate, especially when studying large molecules or
complex systems [1].

Our project aims to overcome this challenge
by combining deep learning with advanced quan-
tum simulations, specifically Quantum Monte Carlo

(QMC) methods [2]. QMC is a well-established fam-
ily of methods for solving the Schrödinger equation,
which governs the behavior of quantum systems. It
uses Monte Carlo sampling to evaluate quantum inte-
grals, solving these equations stochastically. This ap-
proach offers a highly accurate description of molec-
ular behavior, especially when paired with neural
network wave functions.

As illustrated in Figure 1, our neural network QMC
framework encodes positions of electrons and nuclei,
solving the Schrödinger equation and thereby deter-
mining the quantum states of the molecules. To that
end, deep learning methods for iterative optimiza-
tion of the neural network parameters are employed.
From the optimized quantum states properties such
as excitation energies and interatomic forces can be
calculated. By leveraging DeepQMC [3], an open-
source framework that integrates deep neural net-
works with QMC methods, we can compute pre-
cise potential energy surfaces (PES) for ground and
excited states across various molecular configura-
tions—an otherwise difficult task for contemporary
quantum chemistry methods.

To capture the dynamics of excited states, we in-
tegrate DeepQMC results with specialized software
that performs surface hopping simulations, such as
SHARC [5]. This method allows us to model how
excited electrons transition between different states,
capturing critical processes like conical intersections
and intersystem crossing, as illustrated in Figure 2.
These processes are vital for understanding how
energy moves through a molecule after it absorbs
light, enabling us to create a detailed map of energy
pathways.

Figure 1: Pictorial representation of our neural network Quantum
Monte Carlo (QMC) framework. The image illustrates how the
positions of electrons and nuclei in a molecule are encoded into
a neural network, which then solves the Schrödinger equation to
compute the energy of the system. On the left side, the electrons
are shown moving around the nuclei, representing the quantum
mechanical nature of the problem. The output of the neural
network allows for iterative optimization, minimizing the energy
until convergence. From Ref. [2].
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Figure 2: Energy diagram illustrating the excitation and relaxation pathways of a molecule. This diagram shows the potential energy
surfaces for a ground state-singlet (blue curve), an excited singlet state (pink curve), and an excited triplet state (violet curve). When
a photon is absorbed (yellow arrow), the electron is excited from the ground state to an excited state. Various relaxation processes
are illustrated, including internal conversion (green arrow), where the molecule transitions between states without emitting light, and
intersystem crossing (light blue arrow), a transition between singlet and triplet states. Radiative processes such as fluorescence and
phosphorescence are also depicted they are pathways where the molecule emits light while returning to a lower energy state. The
molecular structures along the bottom axis represent changes in molecular configuration as the molecule moves along these energy
pathways.

The diagram in Fig. 2 further illustrates, how an
electron, upon absorbing a photon, transitions from
the ground state to an excited state and then fol-
lows various pathways to relax back.We depict both
radiative processes, such as fluorescence and phos-
phorescence, where light is emitted, as well as non-
radiative transitions like internal conversion and in-
tersystem crossing, which dissipate energy through
molecular vibrations and interactions.

One of the key advantages of our approach is its
ability to model not just a single molecular configura-
tion at a time, but how the same molecule behaves
across different geometries. For instance, when a
molecule bends or twists after absorbing light, al-
tering its geometry, our neural network models can
adapt to these changes. This versatility allows us
to better understand how molecules return to their
stable states, providing insights into phenomena like
fluorescence, where a molecule emits light as it re-
leases energy, or energy transfer processes within
plant pigments.

In summary, our project aims to explore the hid-
den world of excited molecules, providing a clearer
picture of how they capture, transfer, and release en-
ergy. By combining the accuracy of QMC methods
with the expressiveness of neural networks and the
dynamical modeling provided by surface hopping,
we hope to contribute to the development of more
efficient solar energy technologies and deepen our
understanding of the natural processes that power
life on Earth.
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